0% Complete
|
ورود به سامانه
|
ثبت نام
صفحه اصلی
/
icemd2024
A Data-Driven Optimization Framework for Sustainable Electric Vehicle Charging with Grid Stability and Renewable Energy Integration
نویسندگان :
Bagher Khademhamedani
1
Masoud Izadi
2
Nahid Izadi
3
1- دانشگاه صنعتی همدان
2- دانشگاه صنعتی همدان
3- دانشگاه صنعتی همدان
کلمات کلیدی :
Electric vehicles،Grid optimization،Load balancing،Adaptive scheduling
چکیده :
The rapid adoption of electric vehicles (EVs) offers significant environmental benefits but poses challenges for power grids, including increased demand, instability, and renewable energy integration. This paper introduces a data-driven optimization framework to dynamically manage EV charging while maximizing renewable energy utilization and ensuring grid stability. The framework employs real-time data, machine learning-based predictions, and advanced optimization algorithms to balance grid loads and align charging schedules with renewable energy availability. Simulations show a 25% reduction in peak demand, 85% renewable energy utilization, and an 18% reduction in electricity costs compared to uncontrolled charging. Additionally, the framework enhances voltage stability, ensuring reliable grid performance. This study provides actionable insights for advancing electrified transportation and fostering a sustainable energy ecosystem by addressing real-time adaptability, scalability, and renewable energy alignment. The proposed framework supports policymakers and energy providers in achieving resilient and efficient EV infrastructure.
لیست مقالات
لیست مقالات بایگانی شده
A Feasibility Study to Apply Frequency Response Analysis in Diagnosis of Power Generators
Mohammad Rahimi - Behnam Balali - Asghar Akbari Azirani - Peter Werle
Design of Dual-Rotor Dual-Stator Axial-Field Flux-Switching PM Motor with Low-Cogging Torque and Low-Torque Ripple
Fariba Farrokh - Hossein Torkaman - Abolfazl Vahedi - Mahdi Banejad
Advanced Sensorless Control and Torque Optimization for Switched Reluctance Motors: A Cost-Effective Approach
Masoud Izadi - Bagher Khademhamedani - Nahid Izadi
Electromagnetic Sensor Behavior Prediction Using LSTM Neural Network for Enhanced Accuracy and Reliable Performance
Ahmad Saasni - Mehrdad Ghafari - Mostafa Eftekharizadeh
Torque Profile Enhancement in a Coaxial Magnetic Gear by Modification Shape of Flux Modulator
Alireza Jaferian-Fini - Alireza Sohrabzadeh - Hossein Torkaman - Hamid Ebrahimi
A transfer learning based CNN for dynamic security assessment with small datasets and unknown data
ساسان آزاد - Nazanin Pourmoradi - Mohammad Taghi Ameli
Strength analysis of the bushing system supporting set for a medium power turbo-generator using the multiphysics method
Saeed Rostami - Peyman Shoreshi - Mohsen Nikfar
Open-Circuit Fault Diagnosis of Fault-Tolerant DAB Converter for Improving Smart Transformers Reliability using 1-D CNN
Peyman Sheikh Ghomi - Milad Babalou - Hossein Torkaman
A 12/7 Segmented Outer Rotor FSPM Motor with Improved Performance
Sadegh Mollaei Saghin - Aghil Ghaheri - Ali Harooni - Ebrahim Afjei
Frame and stator core vibration analysis of a medium power generator through finite element method
Masoud Shahparasti - Mojtaba Dehghani - Mohsen NIkfar
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2