0% Complete
صفحه اصلی
/
The 4th International Conference on Electrical Machines and Drives
Electromagnetic Sensor Behavior Prediction Using LSTM Neural Network for Enhanced Accuracy and Reliable Performance
نویسندگان :
Ahmad Saasni
1
Mehrdad Ghafari
2
Mostafa Eftekharizadeh
3
1- دانشگاه سمنان
2- شرکت جوانه نرم افزار
3- شرکت جوانه نرم افزار
کلمات کلیدی :
deep learning،high-accuracy data،industrial applications،long-term short-term memory (lstm) neural network،electromagnetic sensor،noise reduction،predictive modeling
چکیده :
Accurate sensors are essential in industries for system monitoring and control. High-precision sensor data can enhance predictions and prevent costly errors, especially in noisy environments that require detailed analysis. In this paper, we simulate the Long Short-Term Memory (LSTM) neural network model to predict the real magnetic signal from noisy data. The LSTM algorithm effectively removes Gaussian and random noise from the received data, providing accurate predictions of the real magnetic signals. Compared to previous works that used simpler methods, such as classical filters or basic models, our proposed algorithm demonstrates significantly higher accuracy. By using LSTM to remove noise and improve predictions, errors have been minimized, resulting in enhanced prediction accuracy. The simulation results indicate that the model can simulate the real behavior of the system with 97.67% accuracy, with minimal difference between the predicted and actual signals. This level of accuracy allows our model to significantly outperform previous methods in predicting magnetic signals in noisy environments and proves highly effective for industrial applications requiring precise accuracy.
لیست مقالات
لیست مقالات بایگانی شده
ارائه یک ساختار جدید سیمپیچ جهت کاربرد شارژر بیسیم خودروی برقی
سید محمود موسوی - عباس غایبلو
Investigation study of Injecting Numerous DGs in IEEE 69 – bus Radial Networks Using Enhanced PSO and Ant Lion Optimization Algorithms
Ali Altahir - Ahmed Rahim Ali - Shamam Alwash - Murtadha Al-Kaabi
Fast Method for End Winding Leakage Inductance Calculation in Induction Motors
Mohamadreza Soleimani - Moein Farhadian - Hamed Tahanian
A Comprehensive and Comparative Analysis of Multilevel Inverter Topologies: From Early Generations to Smart Innovations Using SiC/GaN and Machine Learning
Abbas Akbarzade Lelekami - Karim Abbaszade - Sadegh Parsa
A New Methodology for Design Optimization of Interior Permanent Magnet Motors for Electric Vehicle Applications
Farshad KIANI - Hamed Tahanian
A New Single-Phase Integrated Battery Charger for Electric Vehicles Using Open-Winding PMSM Drive and Applying Model Predictive Control
Mohammadjavad Golalipour - Mahdi S. Mousavi - S. Alireza Davari - Mokhtar Aly - Freddy Flores-Bahamonde - Jose Rodriguez
طراحی نوسان گر آهنربای دائم لوله ای خطی با ساختارهای مختلف جهت افزایش نیروی رانش
حمیدرضا رفیعی - عباس شیری
Optimum Selection of Distribution Transformers for Tropical Regions Considering Thermal Aging
Hossein Amini - Mohammad Hamed Samimi - Amir Abbas Shayegani Akmal
Three-Dimensional Thermal Analysis of a Rotor-Excited Axial Flux Switching Permanent Magnet Machine by Computational Fluid Dynamics Method
Pedram Dehgosha - Ali Zarghani - Hossein Torkaman - Aghil Ghaheri
Robust sate feedback control of DC-DC boost converter using Legendre polynomials
Soroush Sarmad - Saeed Khorashadizadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.4